I. Coordinate Transformation, DCM
: Vector in Euklidian space
: Coordinates of a vector
measured in the frame ![]()
: Coordinates of a vector
measured in the frame ![]()
![]()
![]()
![]()
Coordinates
of basis vector
measured in Frame
:
![]()
:
-th coordinate of vector
measured in K
:
-th coordinate of vector
measured in K‘
Transformation of coordinates of a vector
:
![]()
![]()
II. Rigid Body
: Orientation of body-fixed coordinate frame as measured in the earth coordinate frame
: Coordinates of a vector
measured in the earth frame
: Coordinates of the same vector
measured in the body frame
: Rotation rate vector of body measured in the body frame
: Unit quaternion associated to the rotation matrix ![]()
![]()
Definition Pitch-Roll:

Definition Yaw-Pitch-Roll:

Definition II Roll-Pitch:

Definition II Yaw-Roll-Pitch:

III. Rotations
Rotation Matrices


![Rendered by QuickLaTeX.com \begin{array}{rcl} {\bf{R}}(\Psi,\theta,\phi) &\equiv& {\bf{R}}_z(\Psi) {\bf{R}}_y(\theta) {\bf{R}}_x(\phi) \\[9px] &=& \left(\begin{array}{ccc} \cos\theta \cos\Psi & \sin\phi \sin\theta \cos\Psi - \cos\phi \sin\Psi & \cos\phi \sin\theta \cos\Psi + \sin\phi \sin\Psi \\ \cos\theta \sin\Psi & \sin\phi \sin\theta \sin\Psi + \cos\phi \cos\Psi & \cos\phi \sin\theta \sin\Psi - \sin\phi \cos\Psi \\ -\sin\theta & \sin\phi \cos\theta& \cos\phi \cos\theta \end{array}\right) \end{array}](https://www.olliw.eu/wp-content/ql-cache/quicklatex.com-bf3a339f2b62fea893cb6c075a610311_l3.png)

![]()
![]()
![]()
Generators

![]()
![]()
Definition: ![]()

![]()
![]()
,
,
![]()
![]()
![]()
Rotations and Generators
![]()
![]()
![]()
Rotation Derivatives
Definition: ![]()
![]()
![]()
,
, ![]()
Skew Symmetric Matrices
, ![]()

![]()
![]()
Rotations and Skew Symmetric Matrices
, ![]()
, ![]()
![]()
Exponential Map
![]()
![]()
with ![]()
![]()
IV. Quaternions
: Quaternion
: Real part of quaternion ![]()
: Imaginary part of quaternion ![]()
![]()
![]()
![]()
Quaternion Multiplications

![]()
![]()
![]()
Unit Quaternions
![]()
Unit Quaternions and Rotations
: Unit quaternion associated to the rotation matrix ![]()
: Rotation matrix
associated to the unit quaternion ![]()
![Rendered by QuickLaTeX.com \begin{array}{rcl} {\bf{R}}|_{\bf{q}} &=& \left(\begin{array}{ccc} q_0^2 + q_1^2 - q_2^2 - q_3^2 & - 2 q_0 q_3 + 2 q_1 q_2 & 2 q_0 q_2 + 2 q_1 q_3 \\ 2 q_0 q_3 + 2 q_1 q_2 & q_0^2 - q_1^2 + q_2^2 - q_3^2 & - 2 q_0 q_1 + 2 q_2 q_3 \\ - 2 q_0 q_2 + 2 q_1 q_3 & 2 q_0 q_1 + 2 q_2 q_3 & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{array}\right) \\[24px] &=& 2 \left(\begin{array}{ccc} q_0^2 + q_1^2 - \frac{1}{2} & - q_0 q_3 + q_1 q_2 & q_0 q_2 + q_1 q_3 \\ q_0 q_3 + q_1 q_2 & q_0^2 + q_2^2 - \frac{1}{2} & -q_0 q_1 + q_2 q_3 \\ -q_0 q_2 + q_1 q_3 & q_0 q_1 + q_2 q_3 & q_0^2 + q_3^2 - \frac{1}{2} \end{array}\right) \\[24px] &=& \left( 2 q_0^2 - 1 \right) {\bf{1}} + 2 q_0 [\vec{q}]_\times + 2 \vec{q} \vec{q}^T \end{array}](https://www.olliw.eu/wp-content/ql-cache/quicklatex.com-51e7c93d391c7ea3904f5f871fe2e0bd_l3.png)
, where ![]()
![]()
,
where
(for rigid body kinetics it’s
)
Note: For numerical implementation see [1].



Spherical Linear Interpolation, Slerp
, where ![]()
V. General
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()