Using STorM32 with ArduPilot: Difference between revisions

From STorM32-BGC Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
 
(355 intermediate revisions by the same user not shown)
Line 1: Line 1:
The STorM32 gimbal controller can communicate with an [http://ardupilot.org/ardupilot/index.html ArduPilot] flight controller via (i) a serial UART data line or (ii) the CAN/UAVCAN bus. The serial/UAVCAN communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional PWM connections. Examples are advanced control functions or the [[STorM32-Link]]. It also leads to a clean wiring.
''The information on this page refers to firmware v2.64e, and higher.''


If you just need the range of functionality possible with the standard tilt & pan control, then you don't need anything of the following, and you may stop reading here. Also, some of the features discussed below can be accomplished by workarounds. Decide yourself which approach fits your needs best. :)
The STorM32 gimbal controller can communicate with an [http://ardupilot.org/ardupilot/index.html ArduPilot] flight controller via a serial UART data link. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional connections such as PWM, PPM, SBUS, CRSF, and alike.


{{COMMENT|Unfortunately, ArduPilot's gimbal support is partially flawed, which is true especially for its MAVLink mount. That is, some features you will find to work nicely, some others you will find to not work. There is nothing the STorM32 or any gimbal controller can do about it; it's ArduPilot.}}
If you only need the range of functionality possible with the conventional tilt & pan control, then you may not need anything of the following. Some of the basic features can also be accomplished in traditional ways. Decide yourself which approach fits your needs best. :)
 
If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities, then you may want to chose [https://github.com/olliw42/BetaPilot BetaPilot] (BetaCopter/BetaPlane). This fork of ArduPilot is specifically designed for the STorM32 gimbal controller, and provides the best range of functions. For details see [[Using STorM32 with BetaPilot]].
 
<div class="toclimit-3">__TOC__</div>


== STorM32 - ArduPilot Support ==
== STorM32 - ArduPilot Support ==


ArduPilot offers two mounts, which can be used with the STorM32 controller, the '''''STorM32 Mavlink''''' (MNT_TYPE = 4) and '''''STorM32 Serial''''' (MNT_TYPE = 5) mount types. For further details please visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller]. A good sum-up by lvale for the STorM32 Mavlink Mount is found here [http://www.rcgroups.com/forums/showpost.php?p=35263645&postcount=154], and a workaround to access further STorM32 functions here [http://www.rcgroups.com/forums/showpost.php?p=34415407&postcount=115].
'''''ArduPilot''''' offers three mount types, which can in principle be used with the STorM32 controller:
 
* '''''SToRM32 MAVLink''''': MNTx_TYPE = 4
* '''''SToRM32 Serial''''': MNTx_TYPE = 5
* '''''Greemsy''''': MNTx_TYPE = 6
 
For further details on the first two mounts, and instructions on how to use them, please visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller].
 
The ''SToRM32 Serial'' mount (MNTx_TYPE = 5) does not work with v2.xx firmwares, and should not be considered except for legacy I2C setups running v0.9x firmware.
 
The ''Greemsy'' mount (MNTx_TYPE = 6) is MAVLink based, and thus can in principle be used with STorM32. This mount in fact exploits the 'new' gimbal messages of the [https://mavlink.io/en/services/gimbal_v2.html gimbal protocol v2], and would offer some real benefits. However, it unfortuntaley violates and breaks the MAVLink standard in various respects, and interoperability with STorM32 is thus mixed.
 
The ''SToRM32 MAVLink'' mount (MNTx_TYPE = 4) currently appears to work best with STorM32 in the sense that it produces the least issues, but it is quite limited in its functionality.
 
For both the ''SToRM32 MAVLink'' (MNTx_TYPE = 4) and ''Greemsy'' (MNTx_TYPE = 6) mounts, it is not fully clear what works and what does not work at the time of writing, but the ''SToRM32 MAVLink'' mount (MNTx_TYPE = 4) should work fine with respect to controlling a STorM32 gimbal.
 
'''''Disclaimer''': ArduPilot's gimbal support is a constant source of issues, in terms of incompatibilities with the official MAVLink standard and/or flaws, and the details can quite vary with the ArduPilot firmware version. Also the ArduPilot documentation can be out-of-date. Please note that STorM32 can't do anything about this, it's ArduPilot, and please also note that the STorM32 firmware author is neither responsible for the implementation of ArduPilot's mount types nor for ArduPilot's documentation.''


{{COMMENT|Please note that the STorM32 firmware author not responsible for the implementation of these two mounts; it's ArduPilot.}}
== Virtual Channel Configuration ==


The '''''BetaCopter''''' fork of ArduPilot additionally offers the '''''STorM32 UAVCAN''''' (MNT_TYPE = 83) and '''''STorM32 Native''''' (MNT_TYPE = 84) mount types. These mount types are created and maintained by the STorM32 firmware developer and provide the best range of functions. The STorM32 UAVCAN and STorM32 Native  mounts are essentially identical function-wise; they differ only in the bus used for communication between the STorM32 and the flight controller.
ArduPilot does not emit the RC_CHANNELS MAVLink message by default, which could be desired for taking advantage of the STorM32's virtual channel feature.


A comparison of the different techniques to connect the STorM32 with the flight controller is given in the following feature matrix.
It can be activated in the flight controller by setting the SRx_RC_CHAN parameter to a non-zero value, where 'x' refers to the stream associated to the serial port which is used for the MAVLink communication with the STorM32 controller.


=== Feature Matrix ===
For more details on the feature see [[Using_STorM32_with_BetaPilot#Virtual_Channel_Configuration|Virtual Channel Configuration]].
(to the best of the authors knowledge)
<!--
== Feature Matrix ==
(for ArduPilot 4.2)(the status for ArduPilot 4.3 is presently unclear)(all to the best of the authors knowledge)
{| class="wikitable" style="text-align: center;"
{| class="wikitable" style="text-align: center;"
!Feature
!Feature
!PWM
!Traditional<br>PWM, PPM, SBUS, ...
!STorM32 Mavlink
!SToRM32 MAVLink<br>(MNT_TYPE = 4)
!STorM32 Serial
!SToRM32 Serial<br>(MNT_TYPE = 5)
!STorM32 UAVCAN/Native
!BetaPilot<br> STorM32 MAVLink2<br>(MNT_TYPE = 83)
|-
| style="text-align:left;" | Gimbal Angle Control || style="background-color: lightgreen;"| x || style="background-color: #d2f8d2;"| x <sup>(?)</sup> || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | MOUNT_STATUS message || - || style="background-color: #d2f8d2;"| x <sup>(1)</sup> || style="background-color: #d2f8d2;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | ATTITUDE message || - || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Camera Trigger || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Gimbal Point in MP || - || style="background-color: lightgreen;"| x || style="background-color: #d2f8d2;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Solo Smart Shots || style="background-color: #d2f8d2;"| x <sup>(3)|| - || - || style="background-color: #d2f8d2;"| x <sup>(3)</sup>
|-
| style="text-align:left;" | Camera Manager in QGC || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | MAVLink Parameters || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Video Control in Missions || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Gimbal Angle Control || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x <sup>(?)</sup> || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
| style="text-align:left;" | 360° Gimbal with Free Look || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Solo Smart Shots || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32 Functions || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | MAV_MOUNT_STATUS message || - || style="background-color: lightgreen;"| x <sup>(1)</sup> || style="background-color: lightgreen;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32 Scripts || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Camera Trigger || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x <sup>(?)</sup> || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32-Link: Horizon Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup></sup>
|-
|-
| style="text-align:left;" | Gimbal Point in MP || - || style="background-color: lightgreen;"| x <sup>(?)</sup> || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32-Link: Yaw Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup></sup>
|-
|-
| style="text-align:left;" | Video on/off || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Passthrough Configuration || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | 360° Gimbal with Free Look || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Camera Microservice || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32 Functions || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Advanced Features || - || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32 Scripts || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Statustext messages || - || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32-Link: Horizon Drift Comp. || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32 Gimbal Protocol || - || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32-Link: Yaw Drift Comp. || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | Prearm Checks || - || - || - || style="background-color: lightgreen;"| x
|}
|}


(?) May or may not work properly in the latest ArduPilot releases, see the comment in the introduction. Please check with the ArduPilot community.
(?) Many but not all features work in the latest ArduPilot releases. Please check with the ArduPilot community.


(1) The message reports the last set point, not the actual gimbal/camera orientation.
(1) The message reports the last set point, not the actual gimbal/camera orientation.


(2) Works only for deprecated v0.xx firmwares.
(2) Works only for deprecated v0.9x firmwares.
 
== BetaCopter ==
 
I made some modifications to the ArduCopter firmware (currently AC3.6-dev) and called the result BetaCopter, which provides simply the best support of STorM32 gimbals.
 
'''''Comments:'''''
* ''If you are satisfied with ArduPilot's gimbal support then there is no need to use BetaCopter. However, if you want to make best use of the STorM32's features and capabilities then you want to chose BetaCopter.''
* ''Before using BetaCopter it is '''strongly''' recommended to first install the original ArduCopter firmware and get the copter flying flawlessly with it, and then to install BetaCopter.''
 
For the following you need the latest versions of BetaCopter and the STorM32 firmware; you can download them from here: [[Downloads]].
 
On the STorM32 controller, the parameter {{PARAMNAME|Mavlink Configuration}} '''''must''''' be set to {{PARAMVALUE|no heartbeat}}. For configuring the STorM32's CAN bus, please see the article [[UAVCAN]].
 
In order to establish a working communication between the STorM32 and the flight controller, parameters on both sides, BetaCopter and STorM32, need to be adjusted, as described in the following.
 
=== ArduCopter: MNT_TYPE = 83 or 84 ===
 
As mount type you may choose 83 or 84, which activates BetaCopter's UAVCAN or native STorM32 protocols, respectively.
 
==== STorM32 UAVCAN ====
 
* MNT_TYPE = 83
* CAN_D1_PROTOCOL = 1
* CAN_P1_BITRATE = 1000000
* CAN_P1_DRIVER = 1
* STorM32 UAVCAN must be configured, as described in the [[UAVCAN]] article
* available only in BetaCopter
 
{{COMMENT|The CAN bus of the flight controller must be configured in addition. This can require that additional parameters in the flight controller's CAN section must be set appropriately. Please consult the [http://ardupilot.org/ardupilot/ ArduPilot Docs].}}
 
==== STorM32 Native ====
 
* MNT_TYPE = 84
* SERIALx_PROTOCOL = 84
* SERIALx_BAUD = 115
* available only in BetaCopter
 
{{COMMENT|The default baudrate of the STorM32 serial ports is 115200 bps, hence in ArduPilot SERIALx_BAUD has to be set to 115, but other values can also be configured. For, e.g., 230400 bps set in STorM32 {{PARAMNAME|Uart Baudrate}} to {{PARAMVALUE|230400}} and in ArduPilot SERIALx_BAUD to 230.}}
 
The STorM32 UAVCAN and STorM32 Native modes are essentially identical, except that the data communication in the former case is via the CAN bus using the UAVCAN protocol, and in the latter case via the selected serial (UART) port. With either mount activated, you should notice this:
 
* All ArduCopter mount features such as gimbal control, POI, follow me, or smart shots are working. Flawlessly.
* All ArduCopter camera features are working. That is, whenever a certain path of actions (Mavlink, receiver, mission, UAVCAN, ...) lets ArduCopter want to take a picture, the STorM32 controller will know and activate it's camera functions.
* In the Message box of MissonPlanner "STorM32 ..." messages will appear.
* The STorM32-Link, providing horizon drift and yaw drift compensation, and additional features, is present.
 
Setting MNT_TYPE = 83 or 84 is '''''mandatory''''' for any of this to work.
 
=== STorM32-Link ===
 
With MNT_TYPE = 83 or 84 you have also activated the STorM32-Link (for details see [[STorM32-Link]]). In the STorM32 GUI, specifically the {{GUI|Dashboard}} and/or the {{GUI|Data Display}}, you should note that the STorM32-Link field goes to INUSE and OK.
 
{{COMMENT|The STorM32-Link is available only for T-STorM32 gimbals, but not the conventional STorM32 NT gimbals. However, also for the latter a OK will be displayed when a working connection between STorM32 and BetaCopter has been established, and the traditional gimbal control functions are all working. However, the INUSE will not appear, indicating that the STorM32-Link, i.e., the horizon and yaw drift compensation feature, is not available.}}
 
=== STorM32: Virtual Channel Configuration = serial ===
 
In the STorM32 GUI, the parameter {{PARAMNAME|Virtual Channel Configuration}} can be set to {{PARAMVALUE|serial}}, which has this effect:


All STorM32 [[Inputs and Functions|functions]] can be invoked by selecting a {{PARAMVALUE|Virtual-1}} - {{PARAMVALUE|Virtual-16}} input channel, as if the STorM32 would be directly connected to the receiver. This allows doing many useful things, such as activating a script or triggering video on/off from the transmitter. It however also allows doing nonsense, and it is the users responsibility to avoid that. For instance, if the ArduPilot mount is activated and is in Rc Targeting mode, and e.g. {{PARAMNAME|Rc Pitch Control}} is set to a virtual input channel, then the gimbal may move in funny ways since it may receive the transmitter stick information from both the ArduPilot mount and the receiver. In contrast, if the ArduPilot mount is in GPS or ROI Targeting mode, then one gets "free look", which is useful and quite cool actually. As said, all this is exactly as if the receiver would be directly connected to the STorM32 on its RC ports.
(3) Only up to ArduCopter 3.6. ArduCopter 4.0 has introduced two bugs which the STorM32 controller cannot work around.
-->


== Testing the Connection ==
== Testing the Connection ==


The serial/UAVCAN connection can be tested in several ways. The following tests do not require that the copter is completely built, and do not require that the copter is armed.
The serial MAVLink connection can be tested in several ways. Suggestions can be found in [[Using_STorM32_with_BetaPilot#Testing_the_Connection | Using STorM32 with BetaPilot: Testing the Connection]]. They may not all work with native ArduPilot, but many will.
 
* '''''STorM32-Link field in the STorM32 GUI''''': The {{GUI|Dashboard}} and {{GUI|Data Display}} each have a field which is related to the STorM32-Link. They should display OK or a similar positive message.
 
* '''''Message box in MissonPlanner''''': In the message box several messages related to the STorM32 should appear. In particular, a message like "STorM32 v2.11e nt v1.30 F103RC" informing about the STorM32 firmware version should be visible. Also, a message "STorM32 in NORMAL mode" should occur when the gimbal has finished initialization and entered NORMAL mode.
 
* '''''Trigger Camera NOW''''': In MissionPlanner the camera can be triggered by a right-mouse-click dropdown menu in the Flight Data map. On the STorM32 side the camera trigger can be easily tested by connecting a visible-light LED (red, green, blue, not IR) to the #IR port.
 
* '''''Gimbal RC Targeting''''': With the ArduPilot mount in RC Targeting mode (which should be the default setting), the camera can be turned with the transmitter sticks.
 
* '''''Sniffing the communication''''': One of course can sniff directly what is going on on the communication data lines. This is especially helpful when using CAN/UAVCAN. You when need a SLCAN adapter, e.g., the [http://www.olliw.eu/2017/uavcan-for-hobbyists/ UC4H SLCAN adapter].
 
== Gimbal Point ==
 
MissionPlanner supports what it calls a gimbal point. It is a blue point icon on the map, which indicates the estimated position at which the gimbal is looking at (see also e.g. https://github.com/ArduPilot/MissionPlanner/issues/1323). In order to activate it, the following ArduPilot parameters must be set:
 
* MNT_STAB_ROLL = 0
* MNT_STAB_TILT = 1

Latest revision as of 10:00, 28 January 2024

The information on this page refers to firmware v2.64e, and higher.

The STorM32 gimbal controller can communicate with an ArduPilot flight controller via a serial UART data link. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional connections such as PWM, PPM, SBUS, CRSF, and alike.

If you only need the range of functionality possible with the conventional tilt & pan control, then you may not need anything of the following. Some of the basic features can also be accomplished in traditional ways. Decide yourself which approach fits your needs best. :)

If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities, then you may want to chose BetaPilot (BetaCopter/BetaPlane). This fork of ArduPilot is specifically designed for the STorM32 gimbal controller, and provides the best range of functions. For details see Using STorM32 with BetaPilot.

STorM32 - ArduPilot Support

ArduPilot offers three mount types, which can in principle be used with the STorM32 controller:

  • SToRM32 MAVLink: MNTx_TYPE = 4
  • SToRM32 Serial: MNTx_TYPE = 5
  • Greemsy: MNTx_TYPE = 6

For further details on the first two mounts, and instructions on how to use them, please visit ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller.

The SToRM32 Serial mount (MNTx_TYPE = 5) does not work with v2.xx firmwares, and should not be considered except for legacy I2C setups running v0.9x firmware.

The Greemsy mount (MNTx_TYPE = 6) is MAVLink based, and thus can in principle be used with STorM32. This mount in fact exploits the 'new' gimbal messages of the gimbal protocol v2, and would offer some real benefits. However, it unfortuntaley violates and breaks the MAVLink standard in various respects, and interoperability with STorM32 is thus mixed.

The SToRM32 MAVLink mount (MNTx_TYPE = 4) currently appears to work best with STorM32 in the sense that it produces the least issues, but it is quite limited in its functionality.

For both the SToRM32 MAVLink (MNTx_TYPE = 4) and Greemsy (MNTx_TYPE = 6) mounts, it is not fully clear what works and what does not work at the time of writing, but the SToRM32 MAVLink mount (MNTx_TYPE = 4) should work fine with respect to controlling a STorM32 gimbal.

Disclaimer: ArduPilot's gimbal support is a constant source of issues, in terms of incompatibilities with the official MAVLink standard and/or flaws, and the details can quite vary with the ArduPilot firmware version. Also the ArduPilot documentation can be out-of-date. Please note that STorM32 can't do anything about this, it's ArduPilot, and please also note that the STorM32 firmware author is neither responsible for the implementation of ArduPilot's mount types nor for ArduPilot's documentation.

Virtual Channel Configuration

ArduPilot does not emit the RC_CHANNELS MAVLink message by default, which could be desired for taking advantage of the STorM32's virtual channel feature.

It can be activated in the flight controller by setting the SRx_RC_CHAN parameter to a non-zero value, where 'x' refers to the stream associated to the serial port which is used for the MAVLink communication with the STorM32 controller.

For more details on the feature see Virtual Channel Configuration.

Testing the Connection

The serial MAVLink connection can be tested in several ways. Suggestions can be found in Using STorM32 with BetaPilot: Testing the Connection. They may not all work with native ArduPilot, but many will.