Using STorM32 with ArduPilot: Difference between revisions

From STorM32-BGC Wiki
Jump to navigation Jump to search
 
(465 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The STorM32 gimbal controller can communicate with an [http://ardupilot.org/ardupilot/index.html ArduPilot] flight controller via (i) a serial data line or (ii) the CAN bus using UAVCAN. The serial/UAVCAN communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional PWM connections. It also leads to a clean wiring.
''The information on this page refers to firmware v2.64e, and higher.''


Two aspects of the communication can be distinguished:
The STorM32 gimbal controller can communicate with an [http://ardupilot.org/ardupilot/index.html ArduPilot] flight controller via a serial UART data link. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional connections such as PWM, PPM, SBUS, CRSF, and alike.
* '''''Control of the gimbal:''''' The serial/UAVCAN communication allows us to control the orientation of the gimbal, with higher precision than possible with the standard inputs, and gives access to all other features of the STorM32 controller, such as triggering a camera, executing on-board scripts, and so on. It also allows the STorM32 to feed back information to the flight controller and the ground station, such as the actual camera orientation, which can be displayed by a ground station or OSD. Advanced operation modes, which in addition involves the flight controller, ground station, companion computer, or other electronics, such as follow me or object tracking, also fall into that category.
* '''''Improved stabilization:''''' In addition, the serial/UAVCAN communication is used to transfer dedicated data from the flight controller to the STorM32 controller, which helps in achieving better stabilization, and hence better videos. For instance, yaw drift can be corrected, horizon shifts in high-speed turns removed, or smoother pans achieved. This part of the serial/UAVCAN communication is called the [http://www.rcgroups.com/forums/showthread.php?t=2395475 STorM32-Link].
This article is mostly concerned with the first aspect, also because the STorM32-Link is not yet fully developed.


If you just need the range of functionality possible with the standard tilt & pan control, then you don't need anything of the following, and you may stop reading here. Also, some of the features discussed below can be accomplished by workarounds. Decide yourself which approach fits your needs best. :)
If you only need the range of functionality possible with the conventional tilt & pan control, then you may not need anything of the following. Some of the basic features can also be accomplished in traditional ways. Decide yourself which approach fits your needs best. :)


== STorM32 - ArduPilot Support ==
If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities, then you may want to chose [https://github.com/olliw42/BetaPilot BetaPilot] (BetaCopter/BetaPlane). This fork of ArduPilot is specifically designed for the STorM32 gimbal controller, and provides the best range of functions. For details see [[Using STorM32 with BetaPilot]].


Four modes of operation are available:
<div class="toclimit-2">__TOC__</div>


=== STorM32 Mavlink ===
== STorM32 - ArduPilot Support ==
 
* MNT_TYPE = 4
* SERIALx_PROTOCOL = 1
* STorM32 MAVLink heartbeat must be activated, {{PARAMNAME|Mavlink Configuration}} = {{PARAMVALUE|emit heartbeat}} or higher
* available in ArduPilot and BetaCopter
 
For further details please visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller]. A good sum-up by lvale is found here [http://www.rcgroups.com/forums/showpost.php?p=35263645&postcount=154], and a workaround to access further STorM32 functions here [http://www.rcgroups.com/forums/showpost.php?p=34415407&postcount=115].
 
=== STorM32 Serial ===
 
* MNT_TYPE = 5
* SERIALx_PROTOCOL = 8
* STorM32 MAVLink heartbeat must be deactivated, {{PARAMNAME|Mavlink Configuration}} = {{PARAMVALUE|no heartbeat}}
* available in ArduPilot and BetaCopter
 
For further details please visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller].
 
=== STorM32 UAVCAN ===
 
* MNT_TYPE = 83
* CAN_P1_DRIVER = 1
* STorM32 MAVLink heartbeat must be deactivated, {{PARAMNAME|Mavlink Configuration}} = {{PARAMVALUE|no heartbeat}}
* available only in BetaCopter
 
{{COMMENT|The CAN bus on the flight controller must be activated properly. This can require that also other parameters in the flight controller's CAN section must be set appropriately. Please consult the [http://ardupilot.org/ardupilot/ ArduPilot Docs].}}
 
=== STorM32 Native ===
 
* MNT_TYPE = 84
* SERIALx_PROTOCOL = 84
* STorM32 MAVLink heartbeat must be deactivated, {{PARAMNAME|Mavlink Configuration}} = {{PARAMVALUE|no heartbeat}}
* available only in BetaCopter
 
The STorM32 UAVCAN and STorM32 Native modes are essentially identical, except that the data communication in the former case is via the CAN bus using the UAVCAN protocol, and in the latter case via the selected serial port.
 
The remainder of this wiki page is devoted exclusively to describing the STorM32 UAVCAN/Native modes; the STorM32 UAVCAN mode is chosen exemplarily.
 
=== Feature Matrix ===
 
{| class="wikitable" style="text-align: center;"
!Feature
!STorM32 Mavlink
!STorM32 Serial
!STorM32 UAVCAN/Native
|-
| style="text-align:left;" | Gimbal Angle Control || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Camera Trigger || style="background-color: lightgreen;"| x (?) || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | MAV_MOUNT_STATUS message || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Video on/off || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Extended Gimbal Angle Control || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | 360° Gimbal with Free Look || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | STorM32 Functions || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | STorM32 Scripts || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | STorM32-Link || - || - || style="background-color: lightgreen;"| x
|}
 
== BetaCopter ==
 
I made some modifications to the ArduCopter firmware (currently AC3.6-dev) and called the result BetaCopter. However, unless the STorM32-specific features are activated by a "secret key" 83 or 84, BetaCopter will - to the best of my knowledge - behave exactly like the original firmware. This means that - to the best of my knowledge - there is no risk involved in using BetaCopter instead of ArduCopter.


For the following you need betacopter 3.6dev v005 and o323bgc v2.31e, or higher. You can download the latest versions from here: [[Downloads]].
ArduPilot offers three mount types, which can in principle be used with the STorM32 controller:


On the STorM32 controller the parameter {{PARAMNAME|Mavlink Configuration}} '''''must''''' be set to {{PARAMVALUE|no heartbeat}}. For using CAN/UAVACN, please see the article [[UAVCAN]].
* '''''SToRM32 MAVLink mount''''', MNTx_TYPE = 4
* '''''SToRM32 Serial mount''''', MNTx_TYPE = 5 (not recommended)
* '''''Greemsy mount''''', MNTx_TYPE = 6 (not recommended)


The following settings or parameter fields are available. The features involve settings on both the BetaCopter and STorM32 side.
For further information visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller].


=== ArduCopter: MNT_TYPE = 83 or 84 ===
The ''SToRM32 MAVLink'' mount (MNTx_TYPE = 4) currently appears to work best with STorM32 in the sense that the main functionality works and it produces the least issues, but it is limited in its functionality. At the time of writing, it is not fully clear what works and what does not work, so the statement is that the ''SToRM32 MAVLink'' mount (MNTx_TYPE = 4) is your best guess.


As mount type you may choose 83 or 84, which activates BetaCopter's UAVCAN or native STorM32 protocol. You should then notice this:
'''''Disclaimer''': ArduPilot's gimbal support is a constant source of issues, in terms of incompatibilities with the official MAVLink standard and flaws, and the details can vary with the ArduPilot firmware version. Also the ArduPilot documentation can be out-of-date. Please understand that STorM32 cannot do anything about this, it is ArduPilot, and please also understand that the STorM32 firmware author is neither responsible for the implementation of ArduPilot's mount types nor for ArduPilot's documentation.''


* All ArduCopter camera features are working. That is, whenever a certain path of actions (Mavlink, receiver, mission, UAVCAN, ...) lets ArduCopter want to take a picture, the STorM32 controller will know and activate it's camera functions.
== STorM32 MAVLink Mount Type (MNTx_TYPE = 4) ==
* All ArduCopter mount features are working. Well, that's mostly exactly what you get also with the other modes of operation, e.g., when using the Mavlink connection with ArduPilot.
* In the Message box of MissonPlanner "STorM32 ..." messages will appear (currently only for MNT_TYPE = 84).
* The STorM32-Link is present.


Setting MNT_TYPE = 83 or 84 is '''''mandatory''''' for any of this to work.
These settings in STorM32 and ArduPilot need to be made.


=== STorM32: Virtual Channel Configuration = serial ===
'''''Settings in STorM32:'''''
* {{PARAMNAME|Mavlink Gimbal}} = {{PARAMVALUE|Gimbal1}}
* {{PARAMNAME|Mavlink Gimbal Stream}} = {{PARAMVALUE|mountstatus}}
* {{PARAMNAME|Mavlink Uart Port}} = {{PARAMVALUE|uart}} if the serial port UART is used (this is the default)
* {{PARAMNAME|Mavlink System ID}} = {{PARAMVALUE|0}} for auto-detection (which is the default) or system ID of autopilot


In the STorM32 GUI, the parameter {{PARAMNAME|Virtual Channel Configuration}} can be set to {{PARAMVALUE|serial}}, which has this effect:
Other MAVLink-related settings can normally be left at their default. A complete description of the parameters is provided in [[MAVLink_Communication#Parameters|MAVLink Communication: Parameters]] (please read it, just in case).


All STorM32 [[Inputs and Functions|functions]] can be invoked by selecting a {{PARAMVALUE|Virtual-1}} - {{PARAMVALUE|Virtual-16}} input channel, as if the STorM32 would be directly connected to the receiver. This allows doing many useful things, such as activating a script or triggering video on/off from the transmitter. It however also allows doing nonsense, and it is the users responsibility to avoid that. For instance, if the ArduPilot mount is activated and is in Rc Targeting mode, and e.g. {{PARAMNAME|Rc Pitch Control}} is set to a virtual input channel, then the gimbal may move in funny ways since it may receive the transmitter stick information from both the ArduPilot mount and the receiver. In contrast, if the ArduPilot mount is in GPS or ROI Targeting mode, then one gets "free look", which is useful and quite cool actually. As said, all that is exactly as if the receiver would be directly connected to the STorM32 on its RC ports.
'''''Settings in ArduPilot:'''''
* MNT1_TYPE = 4
* SERIALx_PROTOCOL = 2
* SERIALx_BAUD = 115


=== STorM32-Link ===
SERIALx can be any of the flight controller's serial ports SERIAL1, SERIAL2, and so on ('x' stands for 1, 2, ...). The default baudrate of the STorM32 serial ports is 115200 bps, SERIALx_BAUD is hence set to 115.


With MNT_TYPE = 83 or 84 you have also activated the STorM32-Link (for details on the STorM32-Link see [http://www.rcgroups.com/forums/showthread.php?t=2395475]). In the STorM32 GUI, specifically the {{GUI|Dashboard}} and/or the {{GUI|Data Display}}, you should note that the STorM32-Link field goes to OK.
With these settings you should notice that:


The main parts of the STorM32-Link functionality are not yet implemented in the STorM32 firmware. However, as evidenced by the STorM32-Link field showing OK, the data exchange is established.
* In MissonPlanner or any other GCS, a MAVLink component named GIMBAL is present in addition.
* In the STorM32 {{GUI|Dashboard}}, the MAVLINK field shows PRESENT.


== Testing the Serial Connection ==
Checking these points provides a quick indicator for whether things are working or not. For further testing, please see [[#Testing_the_Connection|Testing the Connection]].


The serial connection can be tested in several ways. The following tests do not require that the copter is completely built, and do not require that the copter is armed.
The above settings establish the basic configuration. Some features need additional adjustment of some parameters.


* '''''Message box in MissonPlanner''''': In the message box several messages related to the STorM32 should appear. In particular, a message like "STorM32 v2.11e nt v1.30 F103RC" informing about the STorM32 firmware version should be visible. Also, a message "STorM32 in NORMAL mode" should occur when the gimbal has finished initialization and entered NORMAL mode.
=== Further Settings in ArduPilot ===


* '''''STorM32-Link field in the STorM32 GUI''''': The {{GUI|Dashboard}} and {{GUI|Data Display}} each have a field which is related to the STorM32-Link. They should display OK or a similar positive message.
Please '''''disable''''' (set to 0) '''''all SRy/MAVy''''' streaming parameters for the serial port you are using for STorM32. This avoids that the STorM32 controller is bombarded with superfluous messages and helps it to achieve consistent behavior. Depending on the vehicle type and ArduPilot firmware version you may find that the streaming parameters are enabled or disabled by default. So, please check.


* '''''Trigger Camera NOW''''': In MissionPlanner the camera can be triggered by a right-mouse-click dropdown menu in the Flight Data map. On the STorM32 side the camera trigger can be easily tested by connecting a visible-light LED (red, green, blue, not IR) to the #IR port.
== Virtual Channel Configuration ==


* '''''Gimbal RC Targeting''''': With the ArduPilot mount in RC Targeting mode (which should be the default setting), the camera can be turned with the transmitter sticks.
ArduPilot does not emit the RC_CHANNELS MAVLink message by default, which could be desired for taking advantage of the STorM32's virtual channel feature.


* '''''Sniffing the communication''''': One of course can sniff directly what is going on on the communication data lines. This is especially helpful when using CAN/UAVCAN. You when need a SLCAN adapter, e.g., the [http://www.olliw.eu/2017/uavcan-for-hobbyists/ UC4H SLCAN adapter].
It can be activated in the flight controller by setting the SRy_RC_CHAN/MAVy_RC_CHAN parameter to a non-zero value, where 'y' refers to the stream associated to the serial port which is used for the MAVLink communication with the STorM32 controller ('y' is in general different to the 'x' in SERIALx).


== Gimbal Point ==
For more details on the feature see [[Using_STorM32_with_BetaPilot#Virtual_Channel_Configuration|Virtual Channel Configuration]].


MissionPlanner supports what it calls a gimbal point. It is a blue point icon on the map, which indicates the estimated position at which the gimbal is looking at (see also e.g. https://github.com/ArduPilot/MissionPlanner/issues/1323). In order to activate it, the following ArduPilot parameters must be set:
== Testing the Connection ==


* MNT_STAB_ROLL = 0
The serial MAVLink connection can be tested in several ways. Suggestions can be found in [[Using_STorM32_with_BetaPilot#Testing_the_Connection | Using STorM32 with BetaPilot: Testing the Connection]]. Not all suggested tests may work with native ArduPilot, but many should.
* MNT_STAB_TILT = 1

Latest revision as of 19:16, 26 October 2025

The information on this page refers to firmware v2.64e, and higher.

The STorM32 gimbal controller can communicate with an ArduPilot flight controller via a serial UART data link. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional connections such as PWM, PPM, SBUS, CRSF, and alike.

If you only need the range of functionality possible with the conventional tilt & pan control, then you may not need anything of the following. Some of the basic features can also be accomplished in traditional ways. Decide yourself which approach fits your needs best. :)

If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities, then you may want to chose BetaPilot (BetaCopter/BetaPlane). This fork of ArduPilot is specifically designed for the STorM32 gimbal controller, and provides the best range of functions. For details see Using STorM32 with BetaPilot.

STorM32 - ArduPilot Support

ArduPilot offers three mount types, which can in principle be used with the STorM32 controller:

  • SToRM32 MAVLink mount, MNTx_TYPE = 4
  • SToRM32 Serial mount, MNTx_TYPE = 5 (not recommended)
  • Greemsy mount, MNTx_TYPE = 6 (not recommended)

For further information visit ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller.

The SToRM32 MAVLink mount (MNTx_TYPE = 4) currently appears to work best with STorM32 in the sense that the main functionality works and it produces the least issues, but it is limited in its functionality. At the time of writing, it is not fully clear what works and what does not work, so the statement is that the SToRM32 MAVLink mount (MNTx_TYPE = 4) is your best guess.

Disclaimer: ArduPilot's gimbal support is a constant source of issues, in terms of incompatibilities with the official MAVLink standard and flaws, and the details can vary with the ArduPilot firmware version. Also the ArduPilot documentation can be out-of-date. Please understand that STorM32 cannot do anything about this, it is ArduPilot, and please also understand that the STorM32 firmware author is neither responsible for the implementation of ArduPilot's mount types nor for ArduPilot's documentation.

STorM32 MAVLink Mount Type (MNTx_TYPE = 4)

These settings in STorM32 and ArduPilot need to be made.

Settings in STorM32:

  • Mavlink Gimbal = “Gimbal1”
  • Mavlink Gimbal Stream = “mountstatus”
  • Mavlink Uart Port = “uart” if the serial port UART is used (this is the default)
  • Mavlink System ID = “0” for auto-detection (which is the default) or system ID of autopilot

Other MAVLink-related settings can normally be left at their default. A complete description of the parameters is provided in MAVLink Communication: Parameters (please read it, just in case).

Settings in ArduPilot:

  • MNT1_TYPE = 4
  • SERIALx_PROTOCOL = 2
  • SERIALx_BAUD = 115

SERIALx can be any of the flight controller's serial ports SERIAL1, SERIAL2, and so on ('x' stands for 1, 2, ...). The default baudrate of the STorM32 serial ports is 115200 bps, SERIALx_BAUD is hence set to 115.

With these settings you should notice that:

  • In MissonPlanner or any other GCS, a MAVLink component named GIMBAL is present in addition.
  • In the STorM32 [GUI:Dashboard], the MAVLINK field shows PRESENT.

Checking these points provides a quick indicator for whether things are working or not. For further testing, please see Testing the Connection.

The above settings establish the basic configuration. Some features need additional adjustment of some parameters.

Further Settings in ArduPilot

Please disable (set to 0) all SRy/MAVy streaming parameters for the serial port you are using for STorM32. This avoids that the STorM32 controller is bombarded with superfluous messages and helps it to achieve consistent behavior. Depending on the vehicle type and ArduPilot firmware version you may find that the streaming parameters are enabled or disabled by default. So, please check.

Virtual Channel Configuration

ArduPilot does not emit the RC_CHANNELS MAVLink message by default, which could be desired for taking advantage of the STorM32's virtual channel feature.

It can be activated in the flight controller by setting the SRy_RC_CHAN/MAVy_RC_CHAN parameter to a non-zero value, where 'y' refers to the stream associated to the serial port which is used for the MAVLink communication with the STorM32 controller ('y' is in general different to the 'x' in SERIALx).

For more details on the feature see Virtual Channel Configuration.

Testing the Connection

The serial MAVLink connection can be tested in several ways. Suggestions can be found in Using STorM32 with BetaPilot: Testing the Connection. Not all suggested tests may work with native ArduPilot, but many should.